人工智能行业又进入冬天了吗?
卖廉价的Dashboard(可视化)产品。现在想卖预测模型,必须先做出Proof of Concept (PoC),也就是验证这个概念是可行的,让客户感觉到这东西可能有用,不然免谈。然而做出靠谱的PoC基本就相当于做完了整个项目,这是个悖论。以咨询公司为缩影,我们16年招了10多个数据方向的毕业生,而2017和2018年都没招人全都是内部转岗过来的,今年年初留了一个实习生转正。而16年进来的人也只有不到三分之一还未跳槽,其实大家这几年都没做到真正的人工智能,只不过是在大量的在做数据可视化(如Tableau)罢了,偶有零星的项目。 故事二:从「稀缺」到「过剩」,再到? 不可否认的是,初级从业者补给量已经大幅增加,来源包括:各种速成的一年制硕士(国外有很多12个月或者16个月的硕士项目),自学转行的人,培训班毕业生。熟悉我的人应该记得,我的回答是从17年初的劝进->转向17年底的谨慎劝退->直到18年初的劝精。我们都知道系统是存在滞后性的,所以当人们知道一个行业上升时都会大量涌入,直到过剩。从面试角度的一个直接感受是,很多人的履历都很不错,但基础一般都不稳,喜欢谈大方向不喜欢做细节。我有几个同事非常喜欢提深度学习解决方案,可我们公司其实连GPU都没有多少。 这个现象大概是很多企业的共同现象。仔细回想一下,在多少公司邮件里面大家都是凡事必提「机器学习」、「人工智能」、「深度学习」?这个现象在新进入行业的从业者身上更加明显,凡事都想用最复杂的模型来捍卫自己的稀缺性,导致很多项目做到流产 这也不是倒退,而是一种筛选。 故事三:从「科研」到「商业化」,fill the gap?
研究和应用之间的割裂依然存在。商业化科研成果很难,同时面临内外的压力。从去年九月到现在和实习小同学一起写了三篇论文,一篇理论和两篇应用。作为一个快要毕业的研究生,他对于研究的幻想是坐在那里刷刷的列公式或者做大量的代码,而现实情况是:想点子一周,做实验一周,写文章一周,修改包装一周。他后来才意识到写文章其实是一个销售工作,大部分文章考虑的都是“可发表性”而不是“实用性”。而他幻想的通过科研来反哺团队也没那么容易,真的想要走到商业化不容易。我们也尝试把以前写的一些文章做成项目卖给客户,但往往在内部就过不了第一关,因为大家对于问题的理解不在一个层面上,而且这是在分其他团队的蛋糕,所以一般走不到客户那一步计划就夭折了。比如我们想把一个全新的预测模型(预测公司财务表现)卖给某金融客户,那么得由内部的金融方向团队(和客户有交情)从中引荐。但基本在这一步就死掉了,因为没有人愿意被替代,即使一起分蛋糕都不行。各大公司其实或多或少都有这个问题,研究团队(尤其是基础研究)往往与工程团队和销售团队之间关系不好。这在技术领域,尤其是人工智能领域,不算什么秘密 (编辑:鞍山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |